Loss of auditory sensitivity from inner hair cell synaptopathy can be centrally compensated in the young but not old brain

نویسندگان

  • Dorit Möhrle
  • Kun Ni
  • Ksenya Varakina
  • Dan Bing
  • Sze Chim Lee
  • Ulrike Zimmermann
  • Marlies Knipper
  • Lukas Rüttiger
چکیده

A dramatic shift in societal demographics will lead to rapid growth in the number of older people with hearing deficits. Poorer performance in suprathreshold speech understanding and temporal processing with age has been previously linked with progressing inner hair cell (IHC) synaptopathy that precedes age-dependent elevation of auditory thresholds. We compared central sound responsiveness after acoustic trauma in young, middle-aged, and older rats. We demonstrate that IHC synaptopathy progresses from middle age onward and hearing threshold becomes elevated from old age onward. Interestingly, middle-aged animals could centrally compensate for the loss of auditory fiber activity through an increase in late auditory brainstem responses (late auditory brainstem response wave) linked to shortening of central response latencies. In contrast, old animals failed to restore central responsiveness, which correlated with reduced temporal resolution in responding to amplitude changes. These findings may suggest that cochlear IHC synaptopathy with age does not necessarily induce temporal auditory coding deficits, as long as the capacity to generate neuronal gain maintains normal sound-induced central amplitudes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Therapeutic potential of cell therapy in the repair of hair cells and spiral ganglion neurons: review article

The mammalian cochlea is a highly complex structure which contains several cells, including sensory receptor or hair cells. The main function of the cochlear hair cells is to convert the mechanical vibrations of the sound into electrical signals, then these signals travel to the brain along the auditory nerve. Auditory hair cells in some amphibians, reptiles, fish, and birds can regenerate or r...

متن کامل

Tinnitus with a normal audiogram: Relation to noise exposure but no evidence for cochlear synaptopathy

In rodents, exposure to high-level noise can destroy synapses between inner hair cells and auditory nerve fibers, without causing hair cell loss or permanent threshold elevation. Such "cochlear synaptopathy" is associated with amplitude reductions in wave I of the auditory brainstem response (ABR) at moderate-to-high sound levels. Similar ABR results have been reported in humans with tinnitus a...

متن کامل

Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta).

Cochlear synaptopathy can result from various insults, including acoustic trauma, aging, ototoxicity, or chronic conductive hearing loss. For example, moderate noise exposure in mice can destroy up to ∼50% of synapses between auditory nerve fibers (ANFs) and inner hair cells (IHCs) without affecting outer hair cells (OHCs) or thresholds, because the synaptopathy occurs first in high-threshold A...

متن کامل

Impaired speech perception in noise with a normal audiogram: No evidence for cochlear synaptopathy and no relation to lifetime noise exposure

In rodents, noise exposure can destroy synapses between inner hair cells and auditory 1 nerve fibers (“cochlear synaptopathy”) without causing hair cell loss. Noise-induced 2 cochlear synaptopathy usually leaves cochlear thresholds unaltered, but is associated 3 with long-term reductions in auditory brainstem response (ABR) amplitudes at medium-to4 high sound levels. This pathophysiology has be...

متن کامل

NO-Sensitive Guanylate Cyclase Isoforms NO-GC1 and NO-GC2 Contribute to Noise-Induced Inner Hair Cell Synaptopathy.

Nitric oxide (NO) activates the NO-sensitive soluble guanylate cyclase (NO-GC, sGC) and triggers intracellular signaling pathways involving cGMP. For survival of cochlear hair cells and preservation of hearing, NO-mediated cascades have both protective and detrimental potential. Here we examine the cochlear function of mice lacking one of the two NO-sensitive guanylate cyclase isoforms [NO-GC1 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurobiology of Aging

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2016